
JOURNAL OF APPROXIMATION THEORY 37 , 335-355 (1983)

Error Bounds for Derivative Estimates Based on
Spline Smoothing of Exact or Noisy Data

DAVID L. RAGOZIN

Department of Mathematics, University of Washington,
GN-50, Seattle, Washington 98195, U.SA.

Communicated by Carl de Boor

Received October 27,1981; revised May 11, 1982

Estimates are found for the L 2 error in approximating the jth derivative of a
given smooth function f by the corresponding derivative of the 2mth order
smoothing spline based on an n-point sample from the function. The results cover
both the case of an exact sample from f and the case when the sample is subject to
some random noise. In the noisy case, the estimates are for the expected value of
the approximation error. These bounds show that, even in the presence of noise, the
derivatives of the smoothing splines of order less than m can be expected to
converge to those off as the number of (uniform) sample points increases, and the
smoothing parameter approaches zero at a rate appropriately related to m, n, and
the order of differentiability off

1. INTRODUCTION

Error bounds for L 2 approximation by spline interpolants of exact data
generated by a sooth function f have been known for some time. See, e.g.,
Schultz [17] and the references cited there. These bounds and related
theoretical work such as [12] show that spline interpolation is essentially an
optimal method for function (and derivative) estimation from finite exact
data samples, which, moreover, is quite practical at the computational level.

Spline interpolation, however, along with most interpolation processes, is
subject to significant distortion due to noise in the data, particularly when
derivatives of f are to be estimated by differentiation of the interpolating
spline. Spline smoothing, as described, for instance, in [14, 16], is quite
similar to a Tikhonov regularization (cf. [19]), and so it can be expected to
be much less sensitive to noise in the data, particularly for derivative
estimation. In fact, several results in [11,18] show that spline smoothing has
optimal properties for function (and derivative) estimation based on data
samples subject to errors. However general error bounds for spline
smoothing, analogous to those for spline interpolation, do not seem to be
known, although some related estimates are given in Cullum [6] on
numerical differentiation.
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In this paper error bounds are obtained for the order of approximation to
a function f possessing at least k ~ m L 2 derivatives by the 2mth order
smoothing spline with smoothing parameter A. based on either exact or
inexact data (see Eq. (2.1) for the precise definition of this smoothing spline).
For an exact n-point sample our L 2 estimates show that the jth derivative of
the smoothing spline (j ~ k) converges to f U) at a rate bounded, roughly, by
A (k-j)j2m as A -+ 0 and n -+ 00 with l/nA. 112m bounded. For inexact data our
results confirm the expected stability of the spline smoothing process and
they give bounds which indicate that derivative estimation is possible even in
the presence of a noisy sample.

Specifically, when the n-point sample of function values used to generate
the smoothing spline is subject to some random noise, we estimate the
expected value of the error in approximating derivatrives of f by the
corresponding derivatives of the smoothing spline based on this noisy data.
When combined with some estimates due to Craven and Wahba [5] these
results show that for equally spaced samples if n-+ 00 and A~n-2mj(2k+l),

then the jth derivative of the smoothing spline converges to f U) at a rate
bounded by n - (k - j)j(2k +I). This extends results in [5] for the case j = 0,
k=m.

Since the computation of the smoothing spline from any data sample is
relatively easy once the smoothing parameter A has been chosen (see [8,9]
for Algol and Fortran code), these estimates lead to a practical method for
computing derivative estimates. One apparently effective way to select the
smoothing parameter is by the method of generalized cross-validation, as
described in [5], which is known to procedure essentially optimal values for
A for the function estimation problem. Portable Fortran code for this method
exists in several places, including the IMSL library (Edition 8) and [7] for
the cubic (m = 2) smoothing spline case and in [20]. Evidence for the
efficacy of this method of spline smoothing for function (and first derivative)
estimation can be found in [5,22]. A number of examples of the successful
use of these techniques to estimate first through third derivatives of several
functions, based on both artificial and real data sets, are given in [13 J.

In outline, the paper proceeds as follows. First the definitions of the basic
spaces and (spline) smoothing operators are given in Section 2. In addition
this section contains of the basic error estimates for the Tikhanov regularizer
which will serve as a model for the spline smoothing estimates. In Section 3,
we provide some background estimates which relate the Euclidean norm of
the exact sample from f to various Sobolev norms of f and the size of the
mesh at which f is sampled. In Section 4 these estimates are combined with
some facts derived from the minimizing definition of the smoothing spline to
get the desired error bounds for the exact data case. Finally in Section 5, we
treat the case of error bounds for data subject to random noise.
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2. NOTATION, DEFINITIONS, AND BASIC PROPERTIES OF THE

SMOOTHING OPERATORS
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In this section we shall give the basic definitions of the function spaces,
W~ and the smoothing operators we work with. In addition several basic
facts are proved about these operators and spaces and their relation via inter
polation theory.

We work in an L 2 setting for most of this paper and the basic Sobolev
spaces we use are

W~[a, b] = {f:f,f(l),...,flm-l) abs. cont.pm) inL 2 [a, b]}.

For any k ~ m, there are seminorms on this space defined by

If Ii = 1(flk)(X»2dt
a

derived from the semi-inner product

(f, g)k = rf1k)(X) glk)(X) dx.
a

(We shall drop the integration variable from here on.) For most of our work
only these seminorms will be needed rather than any norm, but when a norm
is required we shall use

Ilfll~ = Ifl~ + (b - afm Ifl~,

where the factor (b - a)2m is used to make the norm relatively invariant
under rescaling of the interval. This means that iff is in W~ [a, b] and h in
W~[O, 1] is defined by h(y) = f(a +y(b - a», then with the given
definitions of the norms II hII~ = (b - a) -I Ilfll~.

Let A=An= {a~xl < ... <xn~b} denote an n-point partition of [a,b].
For any functionfdefined on all of [a, b] we denote by f.1 the column vector
in R n given by

In general for vectors y = [Yd, z = [Zi] in R n we shall use the norm and
inner product given by

n

IIyll2 = Ilyili. = L: Y:,
i=1

n

(y, z) = L: YiZi'
i=1

Our basic object of attention will be the spline smoothing operators
Sn,J..,m: R n--. W~[a, b], defined for a smoothing order m ~ 1, a partition An



338 DAVID L. RAGOZIN

For I defined on [a, b j, let hey) = f(x), X =

S",A,m(fa)(x) = S",.l!(b-al2m,m(ha) and SA,ml(x) =

with n~ m, a smoothing parameter A>0, and a vector of data values Y in
R" by

S",A,m(Y) = g",A,m if and only if g",A,m solves the problem:

Find/in W~[a, b] which minimizes b - a II Y- ga 11
2 +A I gl~. (2.1)

n

The minimizer g",A,m exists and is unique since n ~ m implies the map
IA: Wr[a,b]-tR"EBL 2, with IAI=(fa,AI/'i(ml) is an isomorphism onto a
closed subspace H A of the Hilbert space direct sum and g",A,m is just the
inverse image under IA of the orthogonal projection of (Y, 0) onto HA' It is
known [16] that S",A,m(Y) is a 2mth order natural spline on [a, b] with
knots at the xi' i.e., S",A,m(Y) is a C2m - 2 function which is a polynomial of
degree 2m - 1 on each [Xi' Xi + I] and a polynomial of degree m - 1 on
(-00, XI] and [x"' 00). We extend the definition to A= 0 by letting S",O,m(Y)
be the 2mth order natural spline interpolant to the data y; at the knots xi'
since the limA~o S",A,m = S",o,m [16].

Most of our results in this paper concern norm estimates for
11- S",A,m(fam, k ~ m. Almost all of these estimates parallel corresponding
estimates for the Tikhonov regularizer SA,ml of I defined for any I in
L 2 1a, bj, A> 0, by

SA,ml= gA,m if and only if gA,m solves the problem:

Findgin W~[a,b]whichminimizesl/-gl~+Algl~. (2.2)

Again the existence of the required minimizer follows from some projection
facts about Hilbert space and the closure of the range of the injection taking
I in W~ to (f, A1/2pml) in L 2EB L 2. Since we shall need the known estimates
for SA,m and some of the techniques from their proof, we now turn to these
results.

As a start we note a simple fact which allows us to prove all our estimates
only on [0, Ij. Namely, we have

PROPOSITION 2.3.
a + y(b - a). Then
S.l!(b -a)2m,m h(y).

Proof This follows by simply effecting the change of variables
X = a + y(b - a) in the defining equations (2.2) and (2.1) for S",A,m(fa) and
SA,mf I

Next we give a simple extension of some basic facts about the K-method
of interpolation applied to the pair of spaces (W;[a, b], W~[a, bD. Adapting
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the notation of Bergh and LOfstrom [3, Sect. 3], we shall write (A, B)o,q for
the K-method intermediate space between A and B with parameters e, q; in
fact we shall only use q = 2. Specifically we shall need the Besov spaces B~2

which are given by

B~2[a, b] = (W~[a, b], W~[a, b])e,2'

Let us also introduce the notation

s = ek + (1 - e) m.

for the polynomials of degree less than m. Then we can summarize some
useful facts in

PROPOSITION 2.4. For integers k, m with 0 ~ k < m and any real e,
0< e < 1, let s = ek + (1 - e) m.

(i) If s is integral, then B~2 [a, b] = W~ [a, b].

(ii) The quotient norm on W~ [a, b]/IImis equivalent to 11m.

(iii) For pin IIm, S.l.m(P) =P = Sn,.l,m(Pa)'

Proof When [a, b] = (-00, (0) (i) is just [3, (6.4.5)]. The finite interval
case is in [10, p, 166], and follows from the full line case once one notes that
there exist extension operators 1m:L 2 [a, b]-+ L 2 [R] with Imf= f on [a, b]
and Im(W~[a,b])c W~[R]. See [1,4.28].

For (ii) note that IIm is the nullspace of the seminorm 11m and this
seminorm is continuous with respect to the norm 1111m' Hence the quotient
norm and 11m are equivalent Hilbert space norms on W~/IIm'

(iii) This part follows immediately from definitions (2.1) and (2.2) since
g = p in IIm makes the quantities to be minimized equal to zero. I

Now we can prove a basic theorem which simultaneously estimates the
accuracy of approximation of the Tikhonov regularizer in L 2 , and bounds
S.l.mf in the seminorm 11m'

THEOREM 2.5. For 0 ~ k ~ m there exist constants a = a(m, k)
(independent of [a, b]) such that for f in W~ [a, b]

(2.6)

Proof This follows from some simple consequences of the minimization
property of S .l,m together with the previous propositions. A simple derivative
computation shows it will suffice to prove this theorem when [a, b] = [0, 1]

640/37/4-4
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as a result of the change of variables Proposition 2.3. So we shall proceed to
prove (2.6) for the interval [0, 1) and suppress all references to the interval.

First note that for I in W~,

II- SA.m/l~ + A, ISA.m/l~ ~ A, I/I~ (~A, II/II~)

since g = I is admissible in the minimization (2.2) used to define SA.mf This
gives (2.6) for k = m with a(m, m) = 1. Moreover, by letting g = 0 in that
minimization it follows that

(2.7)

which is the desired result for k = 0 with a(m, 0) = 1.
The two preceding inequalities show that for k = 0 and k = m the linear

transformation T, with

(2.8)

maps W~ to H = L 2 (fJ L 2 and the norm of T satisfies II TI1 2 ~ A, kim. If we
apply the standard interpolation theorems for the K-method to T as a map
between the pairs (~, W~) and (H, H), then we get (see [3, (3.1.2)))

T · B(I-8)m (>770 W m) H
• 22 = ff2' 28.2-+ , (2.9)

when H on the right is given the equivalent norm it receives from the K
interpolation method. When e = (m - k)/m, Proposition 2.4(i) says
B~~-8)m= W~. Since Proposition 2.4(iii) shows T(p) =0 for pin llm' T
may be considered as a map from W~/llk' Hence (2.6) follows from 2.4(ii)
and the preceding inequality, once a is set to account for the K-interpolation
and other norm equivalences. I

For bounds on the accuracy of the Tikhonov regularizer as an estimate of
derivatives we have

THEOREM 2.10. For j ~ k ~ m there exist constants fJ = fJ(m, k,j) such
that lor I in W~[a, b)

II- SA.mlil ~ fJA, (k-j)/m I/lz.

Proof Again we restrict attention to [0, 1). Now we start by noting that
the minimizing property of SA,ml is equivalent to the fact that T(f), as
defined in (2.8) above, is orthogonal to (h, A, 1/2h<m» in L 2 (fJ L 2 for all h in
~. In particular when I is in W~ we may set h =1- S.t,ml to get
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Hence

I/I~ = II- SA,m/l~ + ISA,m/l~ + (2/),,) II- SA,m/l~

which implies

341

(2.11 )

When we add to this the corresponding inequality with m = 0, which follows
from Eq. (2.7), the result implies that the map 1- S A,m: W~ --+ W~ has norm
one. The norm of 1- SA,m considered as a map between B~2 and ~,

however, can be bounded by )..s/2m from (2.9). 'So if we apply the inter
polation theorems and [3, (6.4.5)] to the map 1- SA.m between the pairs
(B~2' W~) and (~, Wn with e=(m-k)/m, and s=(k-j)m/(m-k),
we deduce that

Again the fact that for s integral B~2 = ~ can be used to yield

III- SA,m/ll] <" fl).. (k-j)/m II/II~

when fl is set to account for the various norm equivalences. Since
1- SA,m = °on IIm, by Proposition 2.4(iii), 1- SA,m maps W;/IIk into W~,

Hence II Ilk on the right can be replaced by Ilk' in view of 2.4(ii). This yields
the desired result Theorem 2.10, once we note that Ilj is dominated by

1111 j · I

3. RELATIONS BETWEEN DISCRETE AND STANDARD L 2-NoRMS

In order to extend the results of the last section from the Tikhonov
regularizer to the spline smoothing operator, we shall need a number of
results which replace some of the intermediate space theorems we have used.
These relate the Euclidean norm of the sample f4 and the various W~ semi
norms of f In some ways the results we need resemble the more classical
interpolation theorems in the standard theory of Sobolev spaces (e.g., [2,
Sect. 3D. The statements and proofs of these results are collected here as
they may be of independent interest.

All of the estimates to follow depend on the global mesh ratio of the
partition Lf of [a, b]. This is measured ~y.l/~ whose entries are defined by

A=min{x i + 1 -xd. (3.1)

Our first basic result quantifies, in a form useful for our subsequent work,
the obvious fact that I<m) and I(x i ), i = 1,..., n ~ m determine I<k), k <m.
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THEOREM 3.2. Let Lf = {x p ••• , xnl be a partition of [a, b]. For any
integers k < m ~ n there exist constants C = C(m, k, A/A), D = D(m, k) >1
such that for any f in W~

(3.3)

where C is a polynomial in LI/A of degree 2(m - 1). In particular for
- 2km = k + 1, C = Ck(Lf/A) ,and

Remark. In later work we shall denote the k = 0 constants by C(m, LIlA)
and D(m).

Proof If the second inequality (3.4) is true for all k, then the first
follows by induction on m > k. The induction step is achieved by estimating
the second term in (3.3) via (3.4) with k = m.

To prove (3.4), first consider any interval [y, z] containing at least k + 1
of the x/s, say x p ••• , xk+ I. Then for some tl in [y, z] we have the equality
f[x p ••• , xk+I] = Pk)(tl)/k!, where f[x p ••• , xk+ I] is the kth divided difference.
Hence,

f{kl(X) = k!f[x 1 , ... , Xk+ I] +rf{k+ lI.
'1

Since it is easy to prove by induction that

it follows from the previous two inequalities, via Cauchy-Schwarz, that for
all x in [a, b]

If(k)(x)12~2 c: )A-2kj~f2(XJ+I)+2IX-tlllS:IPk+I)121'

where we have used the fact that 2:J=o 0)2 = en. Hence integrating from y
to z yields
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Now choose Yo = a <YI < ... <y/ = b such that (i) (k + l)J ~Y/+I - Yi <
2(k+ l)J and (ii) xjic-y/ for all j and all iic-O, 1. Then each [Y/'Yi+l]
contains at least k + 1 x/s by (i) and the definition of J. Hence (3.6) can be
applied to each interval [Y/,Y/+ I]' for i = 1, 1- 1. Since each xj occurs in
exactly one of the resulting inequalities, when we sum over i and estimate
Yi+I-Y, by 2(k+ 1)3, we get

Multiplication by J2k yields (3.5). I

Notice that all the dependence of the constants has been made very
explicit. In particular none of the constants depend on the interval length
b - a or on n, the number of x/so Also note that the case when k = °gives
estimates for the 12 norm in terms of discrete L 2 and W~ norms.

In the opposite direction we can estimate the discrete 12 norm by W~ type
(semi-) norms. Specifically we have the following inequalities:

THEOREM 3.7. Let .1 be a partition of [a, b] with n ~ k ~ 1. There exist
constants E = E(k, 3/A) and F = F(k) such that

(3.8)

Proof For k = 1 a standard Sobolev-type argument works. Set YI = a,
Yi=(Xi_ I +X/)/2. 2~i~n, and Yn+l=b. Then Xi is in [Y/'Yi+I] and
f(x/) =f(x) +g'f(l)· Hence

2 2 fYi
+

1
(I) 2f (xJ~2f (x)+2IY/+I-Yil (f).

Y,

Integration over [Yi>Yi+I] yields

Now we divide by (Y/ + I - yJ, sum over i, and use the estimates !A ~
. 3-

mm{Yi+1 - Yd and max{Yi+1 - y;} ~"2.1 to get

Ilf.111 2
~ 4A- I

Ifl~ +331fli·
This becomes (3.8) for k = 1 when we multiply by 3.

To prove (3.8) for k> 1 we just use Lemma 3.9 with t = 3 to estimate the
If Ii term in the k = 1 case by J2k Iflk. The lemma is just a version of the
standard interpolation inequalities. I
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The interpolation inequality we need is

LEMMA 3.9, There exist constants y = y(m, k) such that for any f in
W~ [a, b] and any t ~ (b - a)

t
2k Iflz ~ y(lfl~ + t

2m
Ifl~)·

Proof This is essentially [2, Theorem 3.3] except for making y
independent of b - a. To achieve this just use this theorem when [a, b] =
[0, I] to get y, To see that the same constant works on [a, b] apply the [0, I]
case to h(y) =f(x), x = a +y(b - a), with t replaced by t/(b - a) which is
less than one as required in Agmon's theorem, I

4. CONVERGENCE RATES FOR EXACT DATA

This section contains estimates for the spline smoothing operator
analogous to those for the Tikhonov regularizer in Theorem 2.10. These
show that for f in W~, 1~ k ~ m, the smoothing splines Sn,A,m(fA) based on
exact data converge to f, as n --+ 00, A--+ 0. Moreover, they also show that
derivatives of order less than k of the smoothing splines converge to the
corresponding derivatives of f These convergence results require that the
partitions be quasi-uniform, i.e., the mesh ratios Lin/An remain bounded, Our
theorems give convergence rates which are similar to those from Theorem
2,10 once A is replaced by a quantity L '" A+12m

•

Most of the estimates we prove depend on minimizing property (2.1) used
to define the smoothing spline Sn,A,m(fA), Some useful consequences of this
minimizing property are in

LEMMA 4.1. Given Y in R nthe residual vector Y - Sn,).,m(Y)A satisfies

b-a
-n- <Y- SII,).,m(Y)A' hA>= A(Sn,A,m(Y), h>m (4,2)

for all h in W~[a, b]. In particular

b-a
-n- (y - SD,).,m(Y)A' SD,).,m(Y)A> = AISn,A,m(Y)I~ (4.3)

and when f is in W~ [a, b]

b-a
-n-11fA - Sn,).,m(fA)A 11 2

= A(Sn,A,m(fA),f- Sn,A,m(fA»m' (4.4)
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Proof If a Hilbert space norm (and inner product) is defined on
R n rJ:J L 2 by

then (4.2) says (y, 0) - (Sn.l.m(Y),1, (Sn.A,m(y»(m» is orthogonal (in
R n rJ:J L 2 ) to (h,1' h(m», for all h in W~. Standard Hilbert space projection
arguments say this is equivalent to gn.A.m =Sn,A,m(Y) in W~ minimizes the
norm of (y, 0) - (8,1' g(m» over all g in W~, which was our definition of
Sn,A.m(Y). Now (4.3) is immediate and (4.4) follows sincefin W~ means
h =f - Sn.A.m(f,1) can be substituted into (4.2) when Y= f,1' I

This result can be used to give two further equalities, one of which, Eq.
(4.7), is the analog of the first integral relation for interpolating splines (see
[17, Theorem 3.2]).

PROPOSITION 4.5. For yin Rn andfin W~la, b],

and

Ifl~ = If - S n,A.m(f,1)I~ + IS n.A,m(f,1)I~

2 b-a
+Y-n- 11f,1-Sn.l,m(f,1),111

2
. (4.7)

Proof Write Y= (y - Sn,l,m(Y» +Sa,l,m(Y) and f=f - Sn.A.m(f,1» +
Sn,A.m(f,1) and expand the left side. Use (4.3) and (4.4) to replace the middle
inner product terms by norm terms. I

The first part of this proposition allows us to make the estimate

2 b-a 1 2
ISn.A.m(Y)!m ~ 2nA Ily I .

For small A, however, this is a poor bound and can be replaced using

(4.8)

PROPOSITION 4.9. For any partition ..1 of la, b] there exists a constant
G(m, ..1) independent of A, such that

ISn.A.m(y)l~ ~ G(m, ..1) lIy112.
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In fact

for some constant b(m).

DAVID L. RAGOZIN

G(m, .,1) ~ b(m) AA -2m

Proof The existence of a constant dependent on A follows from the
continuity of Sn,A,m: R n

----t W~. If, however, we substitute the interpolating
spline, g = Sn,o,m(Y), in minimization equation (2.1) defining the smoothing
spline Sn,A,m(Y), then it follows that

AISn,A.m(y)l~ ~ b - a II Y- Sn.)"m(y)11 2 +AISn,A,m(Y)I~. n

So G(m, .,1) may be taken as the norm of the interpolation operator Sn,o,m
which is independent of A.

The bound on G(m, .,1) for uniform .,1 follows from the last inequality in
Schoenberg [15]. For more general partitions it follows from de Boor [4]. In
particular the inequality in [4, p. 115] implies that if f = S n,o.m(Y), then for
some constant M depending on m

n-m
ISn,o,m(y)l~ ~ MA L (f[xj , ... , xj+m])2.

j=!

But estimate (3.5) for the divided differences shows that

~t~ (f[xj,...,xJ+m])2 ~ (m + 1) C:) (m!)-2 A- 2m jt/2
(XJ

These two inequalities combine to give the desired result. I

From these simple propositions and the estimates in Theorem 3.2 we can
derive the first main theorem on error bounds for spline smoothing.

THEOREM 4.10. Given any partition .,1 of [a, b]let

- nAA 72
L = C(m,L1/A) b _ a 2+ D(m) .,1 m, (4.11)

where C(m, A/A) and D(m) are as in Theorem 3.2. Then given integers
o~ k ~ m there exist constants H = H(m, k) such that for any f in W~ [a, b j,

(4.12)
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Remark. For A. = 0 this gives error bounds for the natural spline inter
polant which have the same dependence on A as those in Schultz [17,
Theorem 3.41.

Proof As for the Tikhonov regularizer it will suffice to prove the
theorem on the interval [0, 1] since under the standard change of variables,
Proposition 2.3, both A. and ;pm are scaled by (b - a)2m. We proceed to the
proof under the assumption that [a, b] = [0, 1].

Now for k = 0 estimate (3.3) shows that

If - Sn.A.m(fd)l~ ~ C(m, AlA) Allfd - Sn,".m(fd)d 11
2

+D(m);pm If - Sn.A.m(fd)I~.

But (4.7) allows us to estimate each summand in terms of Ifl~ and leads to

L = C(m, AlA) nAA.12 +D(m);pm (4.13)

which is (4.12) for k = 0 with H(m, 0) = 1.
For k = m, (4.7) also shows that If - Sn.A.m(fd)l~ ~ Ifl~ which is better

than the desired result with H(m, m) = 1. When we add the k = 0 case we get

(4.14)

Now if we define the map T by T(f) = f - Sn,A,m(fd ), then Proposition
2.4(iii) shows that T is a map from w~IIIm' while 2.4(ii) implies that (4.13)
and (4.14) give norm estimates for T as a map into w~ and ~, respec
tively. The interpolation results from [3] can be applied to conclude

T' WmlII -4 B(l-B)m• 2 m 22 , (4.15)

Hence, when e = (m - k)lm the equality B;2 = W;, 2.4(i), shows

where H(m, k) accounts for the norm equivalences in the interpolation
theorems. I

This theorem shows that given exact samples from f in W~ [a, b] the spline
smoothing operators produce good approximations to f and to its derivatives
of order less than m. For instance, for quasi-uniform partitions we have the
convergence result of

COROLLARY 4.16. If a sequence of n-point partitions An of fa, b]
satisfies AniAn~ r, all n, then for any f in W~ [a, b]
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as A. -+ 0, n -+ 00. The coefficient in the 0 relation depends only on m, k, and
r.

Proof The quasi-uniformity, An/An ~ r, implies that An = O«b - a)jn)
and C(m, A/A) =O( 1). Hence this corollary follows directly from Theorem
4.10, since L -+ 0 as A. --+ 0 and n -+ 00. •

Even when f has fewer than m derivatives, there are convergence rate
results similar to the ones just proved. Unfortunately the simple interpolation
proofs of Section 2 for SA.m do not carryover directly. The problem is that
the analog of the bound ISA,mfl ~ ~ IfI~ is the discrete norm inequality
IISn,i.,m(f,1),1112 ~ Ilf,1ll\ which can only lead to estimates of the continuous
L 2-type norms by introducing some derivative information. Once this is
done, however, most of the natural estimates follow.

We begin with the ~ estimates when f has k( <m) derivatives.

THEOREM 4.17. Given integers 0 < k < m there exist constants
J = J(m, k, A/A) and K = K(m, k, A/A) such that for any n-point partition A
of [a, b] and any f in W~ [a, b], if G = G(m, A) as in Proposition 4.9 and

- nAA. 72
L=C(m,A/A) b-a 2+D(m)A m,

then

Proof We exploit our previous error bounds for functions in W~ [a, b] as
follows. Let g in W;' [a, b] be arbitrary for the moment. Then adding and
subtracting appropriate terms in g and Sn.A.m(g,1) to the left-hand side in the
desired inequality and applying the triangle and Cauchy-Schwarz
inequalities yields

If - Sn,A,m(f,1)I~ ~ 3(1f- gl~ +Ig - Sn,A.m(g,1)I~

+ ISn,A,m«f - g),1)I~)· (4.18)

We shall work on estimates for the last two terms.
The middle term can be estimated using our basic mth order error bounds

from (4.13) which say
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To handle the last term in (4.18) let y=(f-g)4' Then the continuous
discrete norm estimates of (3.3) show

Also Eq. (4.8) and Proposition 4.9 allow us to estimate each summand on
the right in terms of Ily112. These estimates yield

ISn,A,m(y)l~ ~ BAllyl12,

- - 72 (b-a)B = C(m, LfM) Lf +D(m) Lf m-I min G, 2nA. . (4.20)

Now the Euclidean norm of y = (f - g)a can be estimated in terms of L 2

norms via Theorem 3.7 to get

Allyl12 ~E(k,AIA) If-gl~ +F(k)J2k If-gl~·

When we combine the last two inequalities and use the result along with
(4.19) in (4.18) we get

If - Sn,A,m(f4)1~ ~ 3«1 +E(k, AlA) B) If - gl~ +L Igl~ +F(k) B If - glD·

Now we can choose g = SL,mJ, the Tikhonov regularizer ofJ, and apply
the estimate of Theorem 2.5 for If - SL,mfl~ and LISL,mfl~ and of (2.10)
for If - SL,mfl~ to get

If- Sn,A,m(fa)l~ ~ 3«1 +E(k, AlA) B) aL kim +aL kim +F(k) flBJ2k) IflL

where a = a(m, k), fl = fl(m, k) as in Theorems 2.5 and 2.10. Since A2k ~
Lklm as D(m) ~ 1, the preceding inequality yields the desired result with
J = 3(2a + (flF(k) +aE(k, AlA» C(m, AlA), and K = 3(flF(k) +aE(k, AlA»,
once eqs. (4.19) and (4.20) for Land B are considered. I

Now we can apply interpolation arguments to get error bounds for
derivative estimates for spline smoothing when f has fewer than m
derivatives.

THEOREM 4.21. Given integers 1 ~j < k <m there exist constants
M = M(m, k,j) such that for any partition Lf of [a, b], and any fin W~[a, b],
if J = J(m, 1, ,;rIA), K = K(m, 1, ,;rIA) as in Theorem 4.17, G = G(m, Ll) as in
Proposition 4.9, and L is as in (4.11), then

\ ( b - a ) I(m-kl/(k-I)
If- Sn,A,m(fa)l] ~ M IJ +KA

2m
-

1
min G, 2nA. \

X (1 +LI(b - a)2mylm L (k-jllm Ifl~.
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Proof As usual we restrict ourselves to [a, b] = [0, 1]. If T(f) =
f - Sn.A.m(ffj) as in Theorem 4.10, then replacing If Ii by the larger quantity
Ilflli in the k = I case of Theorem 4.17 implies

T:W~----t~, II TI1 2 ~ (J +KLl2m
-

l min(G, 1/2nA» L 1
1
m.

A similar replacement of Ifl~ by Ilfll~ in norm estimate (4.15) for T says
that

Now all the standard K-method interpolation and norm replacement
arguments we have made, repeatedly, yield the desired results when
e = (m - k)/(m - 1) and s =j(m - 1)/(k - I). I

This gives new convergence rates for spline smoothing and spline inter
polation.

THEOREM 4.22. Suppose {An} is a sequence of n-point partitions of [a, b]
which are quasi-uniform, i.e., LIn/An ~ r for some fixed r ~ 1. Then for fin
W~[a, b], and 0 ~j <k ~ m, the smoothing spline Sn.A.m(ffj) satisfies

(4.23)

where the 0 coefficient depends only on m, k, j, and r. In particular the inter
polating spline Sn.o.m(ffj) satisfies

(4.24)

as n ----t 00.

Proof If we recall the arguments in Corollary 4.16 we see that the quasi
uniformity guarantees that each of the constants J, K, C in our previous
estimates which involve LI/A are bounded independent of n. Moreover, the
quantity L (in (4.11» is such that L = O(An+~m). The estimates for
G(m, An) in Proposition 4.9 and the quasi-uniformity guarantee that the
factor multiplying K in Theorem 4.21 is bounded. Parts (i) and (ii) follow
when these remarks are applied to Theorems 4.10, 4.17, and 4.21. I

5. ERROR BOUNDS FOR INEXACT DATA

Real data samples from a functionfnormally contain some random noise,
even when all systematic errors have been corrected for. In this situation the
spline interpolants (A = 0) are greatly affected (consider the size of G(m, A)
in Proposition 4.9 when A is small) and may well cease to provide the good
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estimates they produce for exact data. This is even more dramatically true
for derivative estimates. It is in this context of noisy data that the spline
smoothing operators, with an appropriate choice of A, demonstrate their
power. In this section we shall show the types of convergence rates which
can be achieved, on the average, in the case of data subject to random noise.

Let us fix the following model for the errors in the data:

Y= f,1 + E,

where e; are uncorrelated, mean zero random variables with a common
variance a2

, i.e.,

E(e;) = 0,

with E standing for expectation. With this model it follows from the linearity
of Sn,A.m that the expected value of the approximation errors for noisy data
satisfy the relationship

So the problem of determining the expected errors and convergence rates for
noisy data is reduced to the previously derived estimates, together with the
problem of estimating the second term above.

Now for random data E the smoothing nature of S n.A,m with A>0 acts to
force Sn,A,m(e) to be closer to zero on the average than would be expected
from the average size of II e 11

2
• A precise version of this fact can be derived in

the case of a uniform partition from some estimates due to Craven and
Wahba in [5].

Let us denote by A(A) the symmetric linear transformation defined for y in
R n by A(A) Y= Sn, ..,m(Y),1' (The symmetry of A(A) follows from (4.2) with
h = Sn,A,m(z),) We need estimates for A(A) from [5, Lemma 4.3] which we
restate in a suitably altered form as

PROPOSITION 5.2. There exist constants Mim), j = 1, 2, such that when
L1 is the uniform n-point partition of [0, 1] and A~ 1, then

Tr(Aj(A» ~ Mim)/A 112m.

Proof This follows from the proof of [5, Lemma 4.3], in particular from
p. 401 once the restriction A~ 1 is considered. As Dennis Cox kindly
pointed out the (heuristic) arguments in that lemma, specifically the approx
imate equalities on p. 402, are exact in the uniform partition case (w(t) = 1),
once one takes D Il = L.I 1/(2nv)2m, where L.I is the sum over v* 0,
v == I mod n. (Utreras [21,22] has given another approach toward removing
the lack of rigor in [5, Lemma 4.3].) I
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Now we estimate the expected size of Sn,.A,m(E).

THEOREM 5.3. For any uniform n-point partition A of [a, b] and any
A. >0 let

Then provided A. ~ (b - a )2m

E(I Sn,.A,m(E)I~) ~ (J2(b - a)2 M,(m )jnA. (2m +1)/2m, (5.4)

E(I Sn•.A,m(E)I~) ~ (J2(b - a)2 NjnA.'/2m, (5.5)

and more generally for 0 < k < m

E(I Sn•.A,m(E)ID ~ (J2(b - a)2 (N +M,(m)) yjnA. (2k+ 1)/2m, (5.6)

where y= y(m, k) as in Lemma 3.9.

Remark. Bounded estimates for very small values of A. could be derived
using Proposition 4.9 but we shall not need these.

Proof We prove this using the interpolation Lemma 3.9 which we
adapted from [2] starting from the extreme cases k = m and k = O.
Moreover, as usual we assume [a, b] = [0, 1]. For k = m we use the
definition of A (A.) and (4.3) to get

2 1
1Sn,.A.m(E)lm = nA. «1 - A (A.)) E, A (A.) E).

So taking expectations and using the mean and correlation properties of the
e; yields

Now use the j = I case of the preceding proposition to deduce (5.4) from
(5.7).

As usual for the k = 0 case we turn to the continuous-discrete norm
estimates in Theorem 3.2 which show that
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When we take expectations and use the previous case, (5.4), we find

353

Once we apply the j = 2 case of Proposition 5.2 we get (5.5).
Now we use the interpolation inequality from Lemma 3.9 with t = A1/2m to

deduce that

E(I Sn,A,m(£)ID ~ yeA -k/mE(1 Sn,A,m(£)I~) +A(m-k)/mE(I Sn,k,m(£)I~)).

Once we use (5.4) and (5.5) to estimate each summand we get (5,6). I

Finally we combine expression (5.1) for the expected error in the face of
noisy data with the estimates from the previous theorem to get the major
theorem on convergence rates for spline smoothing of inexact data.

THEOREM 5.8. Suppose samples Yi =f(x;) + [;i are takenfrom afunction
f in W~[a, b), k> 0, on uniform n-point partitions An of [a, b) subject to
uncorrelated, mean zero errors [;i with common variance (J2. If these samples
are used to construct the smoothing spline approximation Sn,A,m(Y) of order
2m, then for any c and for all n and A satisfying IlnA I / 2m ~ c the expected
value of the integrated mean square error in the jth derivative, j < k,
satisfies

E(lf - Sn,A,m(Y)I])

~ peA + «b - a)ln)2m)(k-j)/m Ifl~ + Q(J2(b - a)2lnA(2j+ 1)/2m (5.9)

for constants P, Q depending only on m, k, and c.
In particular if n --+ 00 and the An are chosen to satisfy An - n - 2m/(2k+ I)

(so :J1;,m/An is bounded), then

(5,10)

Proof. Combine the previous theorem and Theorem 4.22 with the
equality in (5,1) to get (5.9). For (5.10) just note that An _ n- 2m/(2k+ I)

implies the dominant term in each summand of (5.9) is
O(n- 2(k- j)/(2k+I)). I

Remark. Similar bounds for the case j = 0, k = m, can be found in
various papers of Wahba, e.g., [5,23]. Also, it seems most likely, in light of
[22], that the estimates in Proposition 5.2 from [5] continue to hold for
partitions with bounded mesh ratios, Xn/A n~ r. If this is so, then the
previous theorem will carryover to this more general setting.
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